Detection of 'EEG bursts' in the early preterm EEG: visual vs. automated detection.
نویسندگان
چکیده
OBJECTIVE To describe the characteristics of activity bursts in the early preterm EEG, to assess inter-rater agreement of burst detection by visual inspection, and to determine the performance of an automated burst detector that uses non-linear energy operator (NLEO). METHODS EEG recordings from extremely preterm (n=12) and very preterm (n=6) infants were analysed. Three neurophysiologists independently marked bursts in the EEG, the characteristics of bursts were analyzed and inter-rater agreement determined. Unanimous detections were used as the gold standard in estimating the performance of an automated burst detector. In addition, some details of this automated detector were revised in an attempt to improve performance. RESULTS Overall, inter-rater agreement was 86% for extremely preterm infants and 81% for very preterm infants. In visual markings, bursts had variable lengths (approximately 1-10s) and increased amplitudes (and power) throughout the frequency spectrum. Accuracy of the original detection algorithm was 87% and 79% and accuracy of the revised algorithm 93% and 87% for extremely preterm and very preterm babies, respectively. CONCLUSION Visual detection of bursts from the early preterm EEG is comparable albeit not identical between raters. The original automated detector underestimates the amount of burst occurrence, but can be readily improved to yield results comparable to visual detection. Further clinical studies are warranted to assess the optimal descriptors of burst detection for monitoring and prognostication. SIGNIFICANCE Validation of a burst detector offers an evidence-based platform for further development of brain monitors in very preterm babies.
منابع مشابه
Optimization of an NLEO-based algorithm for automated detection of spontaneous activity transients in early preterm EEG.
We propose here a simple algorithm for automated detection of spontaneous activity transients (SATs) in early preterm electroencephalography (EEG). The parameters of the algorithm were optimized by supervised learning using a gold standard created from visual classification data obtained from three human raters. The generalization performance of the algorithm was estimated by leave-one-out cros...
متن کاملNewborn EEG Seizure Detection Based on Interspike Space Distribution in the Time-Frequency Domain
This paper presents a new time-frequency based EEG seizure detection method. This method uses the distribution of interspike intervals as a criterion for discriminating between seizure and nonseizure activities. To detect spikes in the EEG, the signal is mapped into the time-frequency domain. The high instantaneous energy of spikes is reflected as a localized energy in time-frequency domain. Hi...
متن کاملReal Time Driver’s Drowsiness Detection by Processing the EEG Signals Stimulated with External Flickering Light
The objective of this study is development of driver’s sleepiness using Visually Evoked Potentials (VEP). VEP computed from EEG signals from the visual cortex. We use the Steady State VEPs (SSVEPs) that are one of the most important EEG signals used in human computer interface systems. SSVEP is a response to visual stimuli presented. We present a classification method to discriminate between...
متن کاملOptimized Seizure Detection Algorithm: A Fast Approach for Onset of Epileptic in EEG Signals Using GT Discriminant Analysis and K-NN Classifier
Background: Epilepsy is a severe disorder of the central nervous system that predisposes the person to recurrent seizures. Fifty million people worldwide suffer from epilepsy; after Alzheimer’s and stroke, it is the third widespread nervous disorder.Objective: In this paper, an algorithm to detect the onset of epileptic seizures based on the analysis of brain electrical signals (EEG) has b...
متن کاملApplication of Electroencephalography (EEG) in Ergonomics: A systematic review study
Background and Objectives: Electroencephalography is one of the non-invasive and relatively inexpensive methods that can be used to evaluate neurophysiology and cognitive functions. This systematic review study was performed with the aim of using electroencephalography (EEG) in ergonomics. Methods: In this review study, all articles published in Persian and English on the application of elec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology
دوره 121 7 شماره
صفحات -
تاریخ انتشار 2010